Key agronomic factors affecting the success of Conservation Agriculture in the irrigated cropping systems of the Bajio (Mexico)

The smallholder farmers of the Bajio face serious threats to the sustainability of their agriculture such as decreasing profitability of cereal farming, dwindling availability of irrigation water and degradation of soil fertility.

Conservation Agriculture (CA) constitutes a very attractive alternative as it promises to bring about instantaneous reductions in production costs, savings in irrigation water and gradual improvements of soil fertility.

Triomphe B.^{1,2} Peñalva M.² Lidon B.¹

¹ CIRAD (France), TA 74/09, Av. Agropolis, 34 398 Montpellier Cedex, France, bernard.triomphe@cirad.fr ² CIMMYT, AP 6-641, Mexico DF Mexico 06 600

Agricultural landscape in the Bajio

Problems with residue management & irrigation under NT

Most farmers prefer to burn or bal their residues since they lack the knowledge, experience and proper equipment for practicing NT with residue retention. Poor residue management under NT induces uneven emergence and low plant stands.

Most farmers apply high doses of irrigation water (20-30 cm / ha / irrigation, and 60-80 cm / cycle are common), as a result of the cracking nature of the Bajio Vertisols, poor leveling and lack of proper socio-economic incentives for saving water. Water logging is common under these circumstances, especially if residues are left in place.

Farmers furthermore claim that residue retention tends to make furrow irrigation more difficult since their presence may prevent timely cut-off of water entry in the furrows and may cause water to circulate randomly among adjacent furrows.

Towards successful management of No-Tillage in the Bajio

Large amounts of residues

are typically produced

A participatory research / development project called ASOSID was launched in 2001 (Triomphe et al., 2003) to promote large-scale CA adoption in the Bajio. It emphasizes the following aspects:

Large-scale diffusion of available NT technology

Table 2: Selected results obtained with the use of NT technologies in the Bajio, Mexico

	adaptation of generic CA	
	principles of current NT	
	technology.	
Ì		
		6

Excessive amounts of water are common applied even under NT.

Development and local adaptation of generic CA	Variable	NT with100% residues	NT after baling	NT after burning	Conventional Tillage
technology	1. Results with commercial barley production, winter 2001-2002				
	Total production costs (US \$/ha)	550	n.a	500	670
	Estimated Yield (t/ha)	6.5	n.a	5.8	5.7
Market State	Net return (US \$/ha)	470	n.a	420	230
	2. Water use (m3	/ ha)			
excessive amounts of vater are commonly pplied even under IT.	Commercial wheat, 2001-2002	5,582	n.a	6,556	n.a
	Experimental barley, 2002-2003	3,503	n.a	n.a	5,834

Preliminary results obtained (2001-2003):

NT allowed a reduction in overall barley or wheat production costs while maintaining or even improving slightly the yields, translating into sharp increase in net returns per ha (Table 1). Uneven residue distribution led to poor results under NT (Figure 1).

Planting only 2 rows on top of the bed allowed good yields with low seed rates (Table 3).

NT with residues also appeared to allow significant savings in water use (Table 2, Figure 2).

Table 3: Barley yield and yield components with different seed distribution and seed rates in the Bailo, Mexico, 2002-2003

Experiment	Variable	Conventional planting	Double furrow (low density)
Arturo Aboytes	Estimated Yield (t/ha)	6,875	4.522

Technology being tested	Objectives / Issues being addressed	Years
reennology being tested		obtain results
Full vs. partial residue retention	How best to manage large quantities of residues; quantify impact on soil fertility over time	3 to 5
Diversification of rotation (introduction of leguminous and oleaginous crops)	Better residue turn-over, reducing pests and diseases, improving soil fertility, introducing crops with low water requirements, looking for more profitable crops & rotations	3 to 10
Planting on permanent beds	Reduce seed and fertilizer rates, reduce water use, controlled traffic	3 to 5?
Better irrigation management	Reduce water use by decreasing depth of water applied, intervals between irrigation or number of irrigations	3 to 5?
Reduced N fertilizer rates	Reduce production costs and environmental pollution	3 to 5

Table 1: List of key NT technologies being tested in the Bajio, Mexico.

Conventional Tillage INT after baling INT with 100% residues Figure 1: Experimental Barley yield (kg/ha) with 3 levels of residue

First irrigation Second irrigation Third irrigation Figure 2: Water use (m3/ha) in experimental barley with 2 levels of residue retention in the Bajio, México, 2002-2003.

Centre de coopération internationale en recherche agronomique pour le développement

ultivar: Esperanza eed rate: 150 y 75 kg/ha	N° of spike/m2	387	211
	N° of grains/spike	42	51
	Weight of 1,000 grains (g)	43.0	42.6
Guadalupe Pérez	Estimated Yield (t/ha)	4.764	4.809
Cultivar: Esmeralda	N° of spike/m2	343	272
Seed rate: 126 y 72 kg/ha	N° of grains/spike	36	45
	Weight of 1,000 grains (g)	38.3	39.7
Samuel Aguilera	Estimated Yield (t/ha)	6.099	6.351
Cultivar: Esperanza	N° of spike/m2	370	380
Seed rate: 134 y 76 kg/ha	N° of grains/spike	43	46
	Weight of 1,000 grains (g)	38.5	36.0

References

JOURDAIN, D.; B. TRIOMPHE and J.M. ARREOLA, 2001: Differential adoption of direct-seeding in Guanajuato (Mexico): a baseline diagnostic. In: Garcia-Torres et al.: Conservation Agriculture: a worldwide challenge 1st World Congress on Conservation Agriculture, Vol 2: ECAF and FAO, 35-39.

TRIOMPHE, B.; J.R.ROCHA; H.HOCDÉ; E. CHIA, 2003: Partnerships, Farmer participation and Conservation Agriculture: Initial experiences and lessons from the Bajio (Mexico). (these proceedings).

Vigorous sorghum growth under NT with full residue retention.

Maize planting under NT on standing barley residues

Perspectives

Conservation Agriculture contributes effectively to increasing profitability of cereal farming and to reducing water consumption in the Bajio.

Conceptual and practical training of farmers and extension as well as quality technical assistance to farmers will be key for achieving CA adoption over a short time frame (5 years). Devising innovations in irrigation management and nitrogen fertilization constitute additional ways of ensuring the future sustainability of the Bajio agriculture. Innovations will also be needed in the organizational arena.

Achieving active farmer participation and leadership is of paramount importance to ensure the success of the corresponding efforts.

0