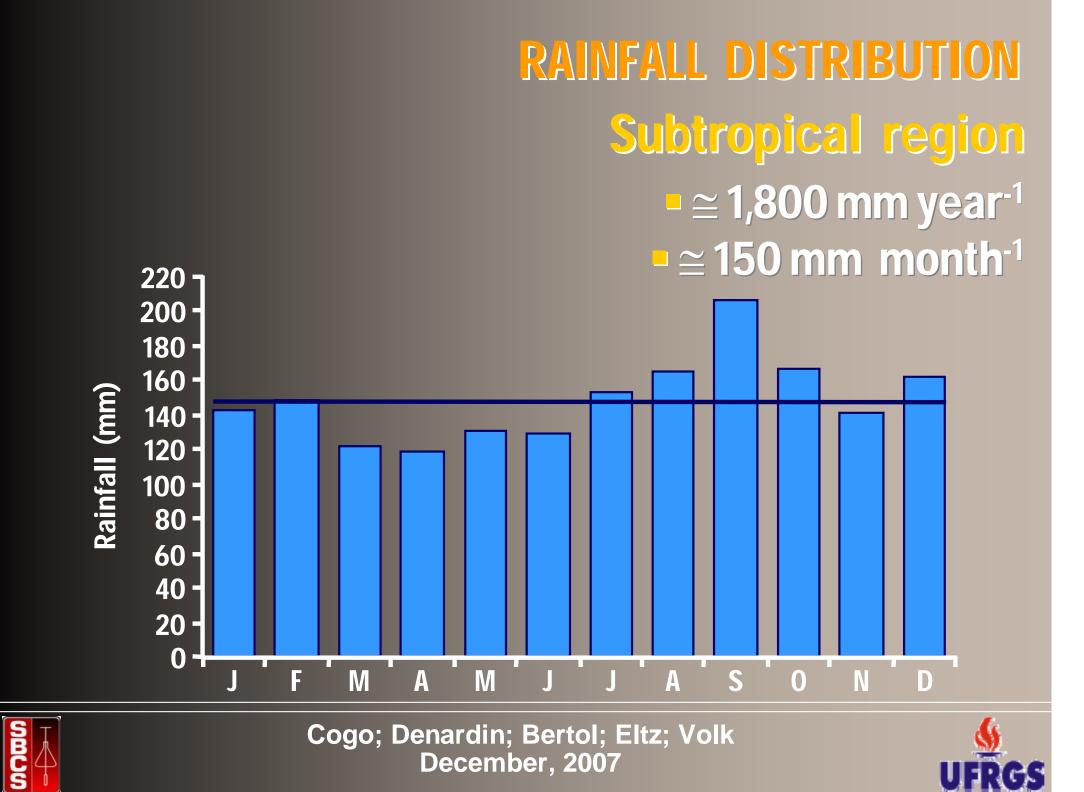
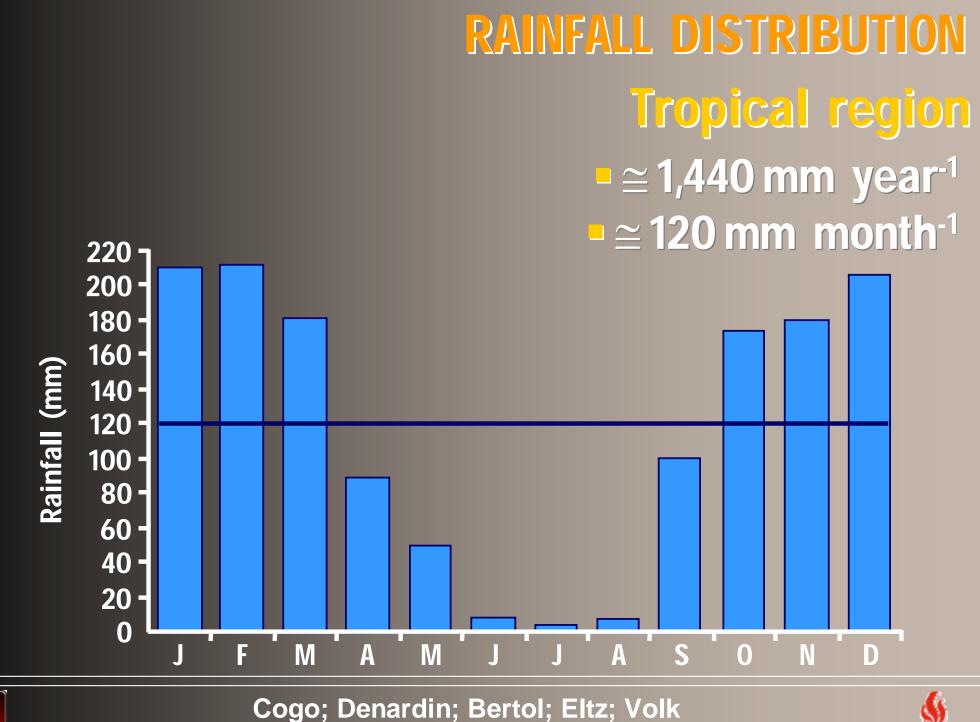


TROPICAL SOILS UNDER DIRECT SEEDING, MULCH-BASED CROPPING SYSTEMS Madagascar, December, 2007

CONTROL OF SOIL EROSION IN BRAZIL BY THE NO-TILLAGE TECHNIQUE: IMPORTANT POINTS TO BE CONSIDERED

N. P. COGO; J. E. Denardin; I. Bertol; F. L. F. Eltz; L. B. da S. Volk




Brazilian Soil Science Society - SBCS Federal University of Rio Grande do Sul - UFRGS

RAINFALL EROSIVITY \simeq 3,000 to 14,000 MJ mm ha⁻¹ hr⁻¹ yr⁻¹ **TROPICAL REGION Concentrated in Spring and Summer SUBTROPICAL REGION Regularly distributed throughout the year**

HIGH RAINFALL-EROSION POTENTIAL

SÔILS TYPE A	ND DISTRIBUT	ION
	 Latosol - Red Latosol - Yellow Latosol - Brown Latosol - Red-Yellow 	38.7%
	Argisol	20.0%
	Neosol - sand quartz	14.6%
	Plinthosol	6.0%
	Cambisol	2.7%
	Nitosol	1.4%
	Others	16.6%

GENERAL CHARACTERISTICS Latosols, Argisols, and Nitosols Deep Well-drained Distributed on slightly rolling to rolling landscape

No limitations for mechanization

GENERAL CHARACTERISTICS Plinthosols, Neosols, and Cambisols Shallow Poorly-drained Presence of stones Hilly landscape

Restrictions for mechanization

SOIL ORGANIC MATTER

SOIL TYPE	g 100 g ⁻¹
Neosols - sand quartz	< 2
Latosols	< 4
Argisols	< 4
Plinthosols	< 4
Nitosols	< 4
Cambisols	>4

SOIL MINERALOGICAL CHARACTERISTICS In general - Clay fraction - 1:1 → (caolinite) - oxides → Fe and Al

LOW CONTENT OF WATER-DISPERSED CLAY

HIGH SOIL-AGGREGATE STABILITY

SOIL PHYSICAL CHARACTERISTICS In general • Total porosity • can exceed 0.60 m³ m⁻³ • High soil-aggregate stability

High permeability to water, air, and roots
Low to medium susceptibility to water erosion

WATER EROSION SUSCEPTIBILITY Soil erodibility

SOIL TYPE	ERODIBILITY ¹

Latosols Argisols Nitosols 0.008 to 0.020 0.020 to 0.045 0.027 to 0.032

¹Factor $K = Mg ha h MJ^{-1} ha^{-1} mm^{-1}$

SOIL CHEMICAL CHARACTERISTICS In general Low pH High aluminum Low available phosphorus Low cation exchange capacity Low exchangeable bases Dystrophic

Restrictions for plant development

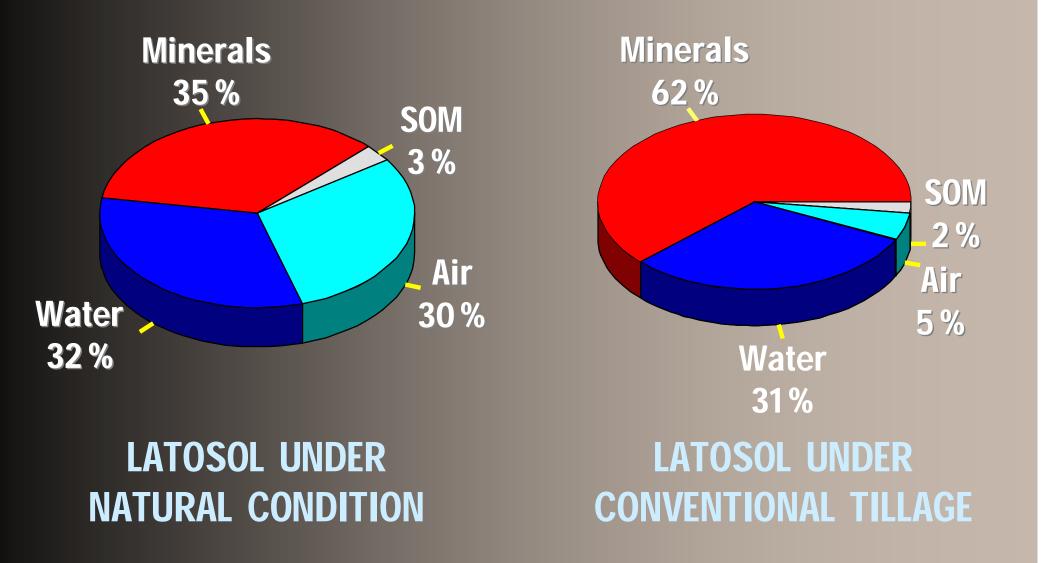
 - 2nd HALF OF 1960'S: SOIL FERTILITY IMPROVEMENT (soil acidity and fertility correction)

> increased crop yield
> Improved profitability and competitiveness
> Improved land value

SOIL ANALYSIS LABORATORY NETWORK - important support for agricultural frontier expansion

AGRICULTURAL FRONTIER EXPANSION HISTORY Beginning: mid 1960's Starting from: forest and pasture lands Great changes: 1970 decade Replacement of forest and pasture areas by monoculture (wheat, soybean, maize, rice)

Conventional tillage Limestone and fertilizers


AGRICULTURAL FRONTIER EXPANSION Soil management practices Intensive soil mobilization Intensive use of lime and fertilizers Wheat/soybean or fallow/soybean Biomass production lower than **SOM decomposition**

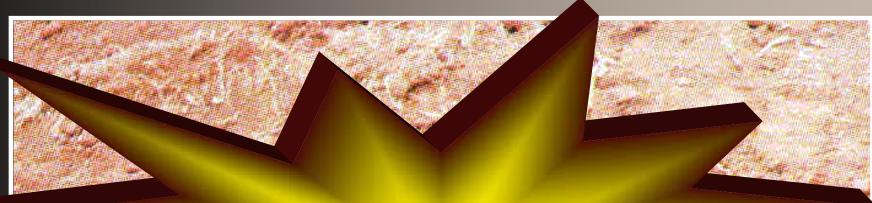
CONSEQUENCES Improvement of soil chemical characteristics Degradation of soil structure

DEGRADATION OF SOIL STRUCTURE

DEGRADATION OF SOIL STRUCTURE (Latosol, conventional tillage)

	3)	3 years		7 years		
Soil	Soil	Aggregate	Soil	Aggregate		
	density	stability	density	stability		
(cm)	(g cm -3)	(%)	(g cm ⁻³)	(%)		
0 - 6	#	#	#	#		
<mark>6 -14</mark>	1.20	78	1.43	48		
14 - 23	1.20	79	1.40	58		
<mark>23 - 30</mark>	1.18	78	1.25	56		

No aggregates > 4.76 mm.


AGRICULTURAL FRONTIER EXPANSION Soil conservation practices Contouring Terracing narrow and medium base (later broad-base), absorption type in Latosols and drainage type in Argisols

THEY WERE SYNONYMS OF SOIL CONSERVATION
Insufficient to control water erosion

CONSEQUENCES OF POOR SOIL MANAGEMENT PRACTICES

SERIOUS EROSION PROBLEMS

POOR SOIL MANAGEMENT AND EROSION

POOR SOIL MANAGEMENT AND EROSION

POOR SOIL MANAGEMENT, EROSION, AND WATER POLLUTION

WHAT TO DO?

EROSION RESEARCH

- The beginning: 1940 decade

- Nationwide efforts: 1970 decade

- Type: field runoff-plots, under natural and simulated rainfall

ROTATING-BOOM RAINFALL SIMULATOR (SWANSON'S TYPE)

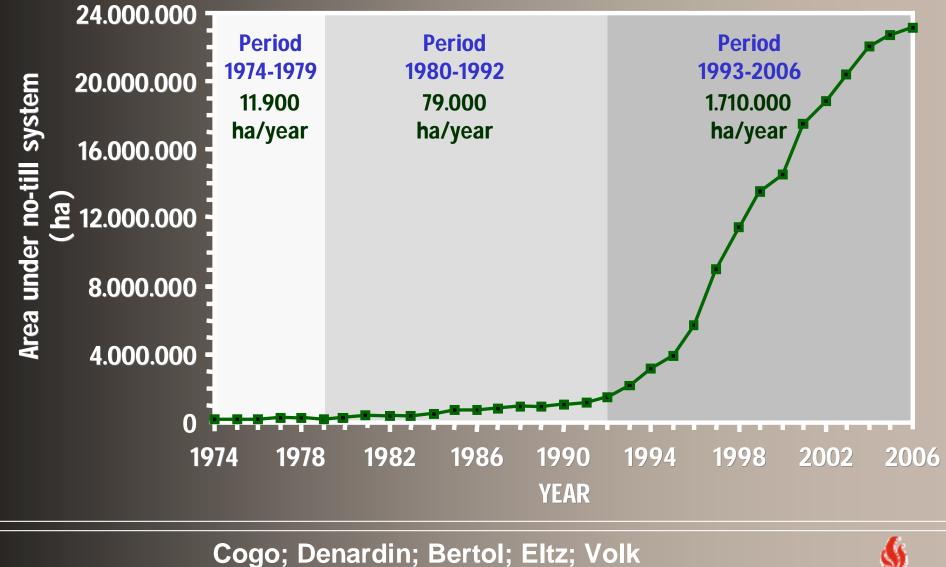
EROSION RESEARCH RESULTS SOIL LOSSES BY EROSION IN DISTINCT SITUATIONS

Soil	Crop	Exp. time	CBS	CIS	MT	NT
		year		Mg ha	a ⁻¹ yr ⁻¹	
Latosol	w/s	6	10.9	3.6	-	
Latosol	w/s	4				
Latosol	f/s	6	9.0			
Argisol	w/s	9				
Argisol	w/s	4				
Argisol	w/s	4	51.5			
Nitosol	w/s	11				
Nitosol	w/s	4		6.0	_	

CBS: conventional tillage, burned stubble; CIS: conventional tillage, incorporated stubble; MT: minimum tillage; NT: no-till W/S: wheat/soybean; f/S: fallow/soybean

EROSION RESEARCH RESULTS SOIL LOSSES BY EROSION IN DISTINCT SITUATIONS

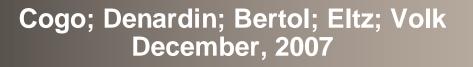
REGION	SOIL	PERIOD	BS	CBS	CIS	NT	%
				r	Mg ha ⁻¹ y	r-1	
Subtropical	Latosol	Winter	67.5	5.5	1.7	0.7	<mark>51</mark>
		Summer	65.1	5.4	1.9	8.0	<mark>4</mark> 9
Total			132.6	10.9	3.6	1.5	100
Tropical	Latosol	Winter	4.0	0	0	0	5
Tropical	Latosol	Winter Summer	4.0 49.0	0 9.0	0 6.0	0 5.0	5 95
Tropical Total	Latosol						



CONSERVATION MANAGEMENT PRACTICES No-till system Concept Complex technology based on species diversification - intercropping or crop rotation -, minimization or suppression of cropseason gap, permanent soil coverage, and mobilization of the soil only in the seedrow.

CONSERVATION MANAGEMENT PRACTICES Adoption of no-till in Brazil

December, 2007


NO-TILL SYSTEM IN BRAZIL **Reasons for accelerated adoption** Effective way for controlling water erosion Reduction of time, labor, and costs associated with tillage and seeding operations Possibility of implementing agriculturelivestock combination

CONSERVATION MANAGEMENT PRACTICES No-till system evolution Different phases, based on temporal and spatial arrangement of species 1st > wheat/soybean

NO-TILL SYSTEM IN BRAZIL (TROPICAL PORTION) 1st PHASE

ONDJFMAMJJASO

Wheat

CONSERVATION MANAGEMENT PRACTICES No-till system evolution Different phases, based on temporal and spatial arrangement of species 1st ➤ wheat/soybean 2nd > black oats or radish/soybean

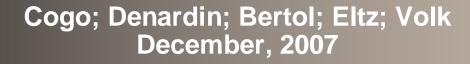
NO-TILL SYSTEM IN BRAZIL (TROPICAL REGION) 2nd PHASE F M A M J J A S N D) ()**Black oats** Soybean Gap OR Radish Soybean Gap

CONSERVATION MANAGEMENT PRACTICES No-till system evolution Different phases, based on temporal and spatial arrangement of species 1st ➤ wheat/soybean 2nd > black oats or radish/soybean 3th > soybean/millet

NO-TILL SYSTEM IN BRAZIL (TROPICAL REGION) 3th PHASE

ONDJFMAMJJASO

Millet



CONSERVATION MANAGEMENT PRACTICES No-till system evolution Different phases, based on temporal and spatial arrangement of species 1st ➤ wheat/soybean 2nd > black oats or radish/soybean 3th ➤ soybean/millet **Presently > soybean/maize/brachiaria**livestock combination

NO-TILL SYSTEM AT PRESENT IN BRAZIL (TROPICAL REGION)

ONDJFMAMJJASO

Maize

Brachiaria & Livestock

NO-TILL SYSTEM AT PRESENT IN BRAZIL

- minimization or suppression of crop-season

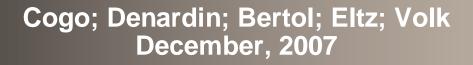
gap (harvest-plant process)

NO-TILL SYSTEM AT PRESENT IN BRAZIL - minimization or suppression of crop-season gap

NO-tILL SYSTEM AT PRESENT IN BRAZIL- minimization or suppression of crop-season gap

IO-TILL SYSTEM AT PRESENT IN BRAZIL minimization or suppression

of crop-season gap


PROBLEMS ASSOCIATED WITH THE NO-TILL THECNIQUE IN BRAZIL (SUBTROPICAL REGION)

The strong, general impact of no-till leads to an erroneous

leads to an erroneous thought -> induced by the idea that it would be enough, as isolated practice, to control all the erosion problems

MISTAKEN INTERPRETATION OF NO-TILL Consequences

Terraces were removed
 Contouring was abandoned
 Excessive grazing in the agriculture-livestock combination
 Cropping systems restricted to soybean or maize/voluntary black oat or ryegrass

Soil degradation - surface compaction Low soil coverage - mulch failure

MISTAKEN INTERPRETATION OF NO-TILL Effects

Terraces removal

MISTAKEN INTERPRETATION OF NO-TILL

Contouring abandonement

MISTAKEN INTERPRETATION OF NO-TILL

Countouring abandonement

BREAKDOWN IN PRACTICE EFFECTIVENESS (Wischmeier, 1973)

- "There are critical slope-length limits beyond which the effectiveness of conservation tillage practices diminishes so that C values derived from the regular soil-loss ratio procedure are no longer applicable " - Also called "mulch failure"

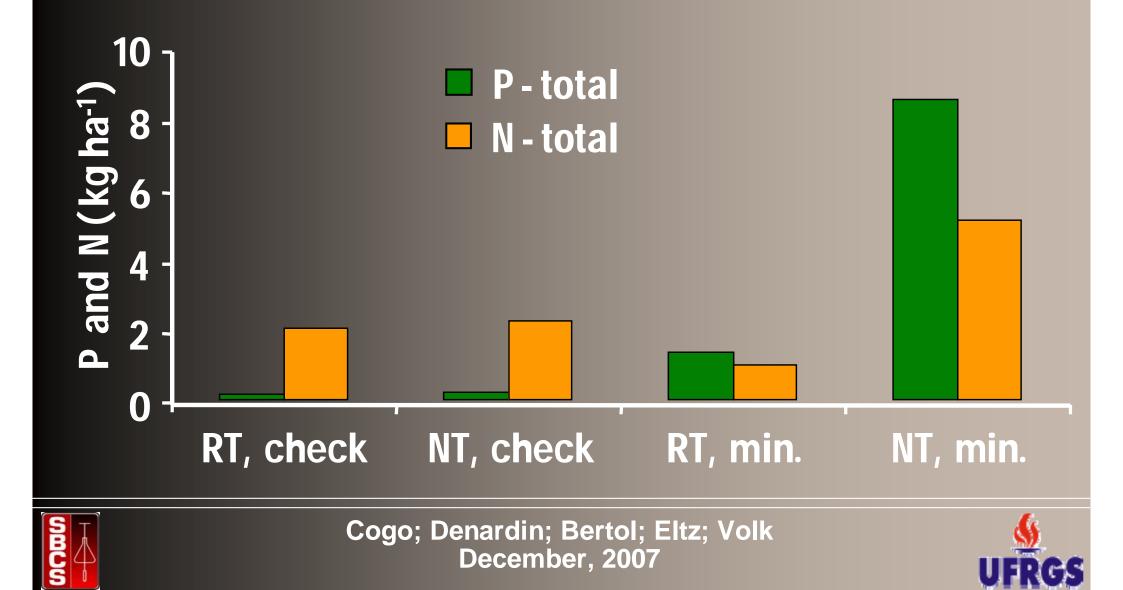
EROSION UNDER CONSERVATION TILLAGE

CRITICAL SLOPE-LENGTH LIMITS IN CONSERVATION TILLAGE

	Crop residue			Critical
Tillage	Туре	Dosage (Mg ha ⁻¹)	Condition	length (m)
No-tillage	maize	12	fresh	328 - 483
No-tillage	wheat	<mark>4</mark> ,	fresh	106 - 143
No-tillage	soybean	5	fresh	<mark>94 - 108</mark>
Reduced tillage	maize	12	fresh	147 - 209
No-tillage	maize	5	semi-dec.	87 - 174
No-tillage	soybean	4	semi-dec.	<mark>29 - 5</mark> 8

MISTAKEN INTERPRETATION OF NO-TILL Effects (mulch failure)

MISTAKEN INTERPRETATION OF NO-TILL

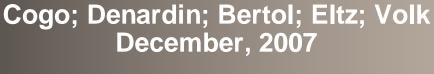

SOIL AND WATER LOSSES IN DISTINCT TILLAGE METHODS

Tillage method	Soil loss	Water loss
	Mg ha ⁻¹	% rainfall
Bare, convtilled soil	16.40	45.5
Conventional tillage	1.94	<mark>11.8</mark>
Reduced tillage	0.13	4.6
No-tillage	0.12	<mark>9.8</mark>


MISTAKEN INTERPRETATION OF NO-TILL NUTRIENT LOSSES IN SURFACE-RUNOFF

CONCLUSION The no-till system, built on: agriculture or agriculture-livestock combination with crop rotation minimization or suppression of crop-season gap use of mechanical and vegetative erosion control practices soil acidity and soil fertility correction precise use of inputs

CERTAINLY CAN BE USED AS AN EFFICIENT TOLL FOR A SUSTAINABLE AGRICULTURE IN TROPICAL AND SUBTROPICAL REGIONS



FINAL CONSIDERATION

Usage of no- till as a tool for agriculture development and conservation in the tropics depends on both the QUALITY and the QUANTITY of biomass produced by crops.

Neroli Pedro Cogo neroli@ufrgs.br

Soils Department Faculty of Agronomy Federal University of Rio Grande do Sul UFRGS-

Cogo; Denardin; Bertol; Eltz; Volk December, 2007

THANK YOU!